BPHM102C/ BPHM202C		Credits - 04	
Hours/Week:(3:0:2)	APPLIED PHYSICS FOR MECHANICAL ENCINEEDING	CIE Marks: 50	
Total Hours:60Hrs(40L+20P)	STREAM (ME,IP and AU Branches) (Integrated)	SEE Marks: 50	
 Course Objectives: 1. To study the properties, general and shock waves 2. To study the elastic properties 3. To study the fundamentals of 4. To study the concepts of low the 5. To study the various material of 	ation and engineering applications of types of os of materials and failures of engineering materia thermoelectric materials, devices and their applic temperature phenomena and generation of low t characterization techniques	cillations ls cations emperature	
	MODULE – I	8 Hrs	
stiffness factor and its physical types of springs and their applic (graphical approach),engineering (qualitative), resonance, sharpness Shock waves: Mach number and Mach ang Construction and working of Red Pre-requisite: Basics of oscillati Self learning: Applications of S	significance, series and parallel combination cations. Theory of damped oscillations (qualita g applications of damped oscillations. Theory ss of resonance. Numerical problems. le, Mach regimes, definition and characteria ldy shock tube, applications of shock waves. Num ions and waves. HM and springs.	of springs (derivation), tive), types of damping of forced oscillations stics of shock waves. merical problems.	
	MODULE – II	8 Hrs	
Elasticity: Introduction, stress-strain curve, between Y, η and σ (with derivat ratio. Beams, bending moment engineering applications. Elastic fracture, brittle fracture, stress explanation). Numerical problem Pre-requisites: Elasticity, Hook Self learning: Single cantilever	stress hardening and softening. Elastic moduli, tion), mention relation between K, Y and σ , limi and derivation of expression. Cantilever and I c materials (qualitative). Failures of engineer concentration, fatigue and factors affecting fa is.	Poisson's ratio, relation ting values of Poisson's section girder and their ing materials - ductile atigue (only qualitative	
	MODULE – III	8 Hrs	
Thermoelectric materials and c Introduction, thermo emf and coefficients, figure of merit (mer	levices: thermo current, Seeback effect, Peltier effec ntion expression), laws of thermoelectricity. De	t, Seeback and Peltier rivation for thermo emf	

coefficients, figure of merit (mention expression), laws of thermoelectricity. Derivation for thermo emf in terms of T_1 and T_2 , thermo couples, thermopile. Construction and working of thermoelectric generators (TEG) and thermoelectric coolers (TEC), low, mid and high temperature thermoelectric materials. Applications: exhaust of automobiles, refrigerator, space program (RTG). Numerical problems.

Pre-requisites: Basics of electrical and thermal conductivity Self-learning: Applications of thermoelectric materials and devices

		0 11
Cryot	MUDULE – IV	ð Hrs
Introd plug o Oxyge resista (qualit Pre re Self-le	Juction, production of low temperature - Joule Thomson effect (derivation with 3 experiment with theory, thermodynamical analysis of Joule Thomson effect. It is a proper thermometer of the sair liquefier, liquefaction of Helium and its proper thermometer. Applications of cryogenics in aerospace, tribology and feative). Numerical problems.	cases), Porous Liquefaction of erties. Platinum ood processing
	MODULE – V	8 Hrs
Mate	rial Characterization and Instrumentation Techniques:	
of X- worki (XPS) Pre-re Self-le	ray diffractometer, crystallite size determination by Scherrer equation. Princip ng and applications of Atomic Force Microscopy (AFM), X-Ray Photoelectro , Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM equisites:Quantum mechanics, principle and working of optical microscope earning: X-Ray diffraction, crystallites.	le, construction, on Spectroscopy
Refer	ence Books :	
1 2	A .P. French, "Vibrations and Waves" (MIT introductory Physics series),CBS,(2 Timoshenko, S. and Goodier J.N.2001 "Theory of Elasticity", (2 nd Edition), McG Book Co.	2003 edition) Graw Hill
3	Sadhu Singh, 1997, "Theory of Elasticity", Khanna Publishers	
4	Wole Soboyejo, 2002, "Mechanical Properties of Engineered Materials" (1 st edit Press.	ion), CRC
5	Singhal, Agarwal & Satyaprakash,2006 "Heat & Thermodynamics and Statistica (18 th Edition), Pragati Prakashan, Meerut	ll Physics"
6	D. S. Mathur, 1991 "Heat and Thermodynamics" (1st Edition) S.Chand & Comp. Delhi	any Ltd., New
7	Brijial & Subramanyam, 1994 "Heat and Thermodynamics" S.Chand & Compar Delhi	ny Ltd., New
8 9	Bahman Zohuri, 2018, "Physics of Cryogenics", Elsevier Sam Zhang, Lin Li, Ashok Kumar, 2008, "Materials Characterization Technique (15] adition) CBC Press	es"
10	(1 cullul), CCC FICSS. Mitra P.K. 2014 "Characterization of Materials" Prentice Hall India Learning F	Private I imited
11	M. S. Ramachandra Rao & Shubra Singh,2013, "Nanoscience and Nanotechnolo Fundamentals to Frontiers", Wiley India Pvt Ltd.	ogy
12	Parameswaranpillai, N.Hameed, T.Kurian, Y. Yu, 2017, "Nano Composite Mate Synthesis, Properties and Applications", CRC Press	erials-
13	Chintoo S Kumar, K Takayama and K P J Reddy, 2014, "Shock waves made sin India Pvt. Ltd. New Delhi.	nple", Willey
14	M.N. Avadhanulu, P. G. Kshirsagar and T. V. S. Arun Murthy, 2019, "A Textbo Engineering Physics" (11 th edition), S. Chand, New Delhi.	ok of
	Engineering Physics" (11 th edition), S. Chand, New Delhi.	

	Weblinks and Video Lectures (e-Resources):
5	Simple harmonic motion :https://www.youtube.com/watch?v=k2FvSzWeVxQ
5	Shock waves: https://physics.info/shock/
5	Shock waves and its applications: https://www.youtube.com/watch?v=tz_3M3v3kxk
5	Stress-strain curves: https://web.mit.edu/course/3/3.11/www/modules/ss.pdf
5	Stress curves: https://www.youtube.com/watch?v=f08Y39UiC-o
]	Fracture in materials : https://www.youtube.com/watch?v=x47nky4MbK8
r	Thermoelectricity :https://www.youtube.com/watch?v=2w7NBuu5w9c&list=PLtkeUZItwH
4	5y6qy1GFxa4Z4RcmzU aaz6
r	Thermoelectric generator and coolers: https://www.youtube.com/watch? v=NruYdb31xk8
(Cryogenics: https://cevgroup.org/cryogenics-basics-applications/
]	Liquefaction of gases:https://www.youtube.com/watch?v=aMelwOsGpIs
	Virtual lab:https://www.vlab.co.in/participating-institute-amrita-vishwa-vidyapeetham
I	Materialcharacterization: https://onlinecourses.nptel.ac.in/noc20_mm14/preview
ł	https://www.encyclopedia.com/science-and-technology/physics/physics/cryogenics
ł i	https://www.usna.edu/NAOE/_files/documents/Courses/EN380/Course_Notes/Ch10_Deformation.pdf

Laboratory Component:

Any Ten experiments have to be completed from the list of experiments

LIST OF EXPERIMENTS

1.	Determination of effective spring constant of the given springs in series and parallel combinations
2.	The study of forced mechanical oscillations and resonance
3.	The study of frequency response in series and parallel LCR circuits
4.	Determination of rigidity modulus of a wire by torsional pendulum method
5.	Determination of Young's modulus of metal strip by single cantilever method
6.	Determination of Young's modulus of a given metal strip by uniform bending method
7.	Identification of passive components and estimation of their values in a given black box
8.	Determination of velocity of ultrasonic waves in a given liquid using ultrasonic
	interferometer

- 9. Determination of Fermi energy of a copper
- 10. Determination of energy gap of a semiconductor by four probe method
- 11. Determination of dielectric constant of a material in a capacitor by charging and discharging method
- 12. Determination of wavelength of laser using diffraction grating
- 13. Determination of acceptance angle and numerical aperture of a given optical fiber
- 14. Determination of the radius of curvature of a given planoconvex lens by Newton rings method
- 15. Step interactive physical simulations
- 16. Study of motion using spread sheets
- 17. Study of application of statistics using spread sheets
- 18. PHET interactive simulations

https://phet.colorado.edu/en/simulations/filter?subjects=physics&type=html,prototype)

4

Course outcomes:

At the end of the course the student will be able to:

- 1. Apply concepts of oscillations and shock waves for engineering applications
- 2. Apply concepts of elasticity for engineering applications
- 3. Select appropriate properties of thermoelectric materials for engineering applications
- 4. Apply the concepts of cryogenics to generate low temperature for engineering applications
- 5. Select appropriate tool for material characterization

Course	Programme Outcomes											
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2			1				1			1
CO2	3	2			1				1			1
CO3	3	2			1				1			1
CO4	3	2			1				1			1
CO5	3	2			1				1			1